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Introduction
SDDS, or Self Describing Data Sets, is a way of storing and working with data that was
developed at the Advanced Photon Source (APS) for use in the simulation and operation
of accelerators. Because SDDS is very generic in nature, it can be used for processing
and displaying data from essentially any source. This document describes the concept
behind SDDS, the implementation of that concept, the capabilities of implementation, as
well as problems and limitations. Numerous examples are given to guide the reader in
using SDDS and developing applications based on SDDS.

Parts of SDDS are linked to the Experimental Physics and Industrial Control System
(EPICS), which is used worldwide to control particle accelerators, telescopes, and other
scientific equipment. At APS, we use SDDS and the Tcl/Tk scripting language to
develop graphical user interfaces (GUIs) for controlling our accelerators. This includes
configuration of the accelerators; data collection, analysis, and display; experiment
execution; and feedback processes, among others.

In addition to being used for control system applications, SDDS is used for pre− and
post−processing of data for accelerator simulations. Again, since SDDS is generic in
nature, it can be used with other types of computer simulations and data sources. Using
SDDS for computer simulations has several advantages. Principle among these is that
one’s simulation programs can be simplified without loss of overall capability. SDDS
provides tools to manipulate the data that serves as input to such programs, so that the
programs themselves do not need to support such operations. SDDS also provides a
highly capable system for analysis and display of simulation output. Hence, the
simulation code doesn’ t need to perform graphics or provide a general−purpose data
analysis facility. SDDS also makes input and output programming less problematical by
providing a set of programming tools for verifying and reading input data and preparing
and writing output data.

SDDS is based on two concepts: the use of "self−describing data" and the use of a
"toolkit" of programs that operate on self−describing data. Self−describing data is
simply data that is identified and accessed by name only. An example of data thatisn’t
self−describing is data in a typical spreadsheet. Very commonly, columns of data in a
spreadsheet are unlabeled and have meaning only because the user remembers what
columns A, B, and so on contain. If the user adds a row of headings to the spreadsheet,
then the data has acquired a basic self−describing character. In principle, any program
could read the data file and determine what data it contains.



Using a spreadsheet file as a general self−describing file has several problems, however.
Spreadsheet files are amorphous in character. The user is not constrained in how the data
is laid out, nor is he required to provide labels for each data element. Hence, it is possible
for the user to accidentally or deliberately create a non−self−describing file or an oddly
formatted file. While this is not necessarily a problem in the context of using a
spreadsheet, it creates difficulties if one wants to use a set of generic tools for
manipulation of this file and other similar files. General spreadsheet data is only
guaranteed to be readable by the spreadsheet program itself.

In contrast, true self−describing data can in principle be read equally by any number of
programs, including programs written by the user. No particular program "owns" the
self−describing file in the way that a spreadsheet program owns a spreadsheet file or a
wordprocessing program owns a document. The spreadsheet program is only one
example of a program that has a specific, essentially private format for its files. It is very
common for custom−designed software in the scientific community to make use of
application−specific file formats that are typically readable only by specially−written
programs that read only the files from that program. This includes not only programs that
operate in a control system environment, but also simulation programs.

With self−describing data, the approach is fundamentally different: Instead of defining
our file format with respect to the programs that create or use them, we define a standard
file protocol and design all programs to work with such files.

Let’s return to the discussion of self−describing data. When accessing data from a self−
describing file, a program asks for the data using a procedure library that allows it to
specify the name of the data and its class. For example, a program might request the
item in the "array" class called "Temperatures" or the item in the "parameter" class called
"Date". The program will be able to determine whether the desired data actually exists,
what its data type is (e.g., floating point or character string), as well as optional
information such as units, description, and dimensions.

Contrast this again with non−self−describing data, which provides none of these features.
With such data, one cannot determine whether the desired data exists in the file, but must
assume it.  Similarly, one cannot determine the data type, class, or units.  This inability to
verify what the data is makes the program more likely to fail, crash, or do something
inappropriate. So we see that there are some clear advantages to using self−describing
data from the standpoint of program reliability.

Many programmers naively assume that this isn’ t a problem, believing they know what
their data will look like and that they can build that knowledge into their applications.
The difficulty with this approach is that software is always changing. It is very common
for an application or program to evolve steadily over the period of its usefulness. In fact,
it is likely that when it stops changing, it is because it it is no longer in demand and is
going to be supplanted by something more capable. Hence, it is important to realize that
software will be required to evolve and to use file protocols that make this easy.

In the process of evolving one’s software, one should strive to maintain backward
compatibility for old data files and interoperability with other applications. This is
possible using self−describing data. For example, an upgraded application can detect the
absence of new data elements (signifying an old data file) and supply a default behavior.
At the same time, when the new data elements are present, the upgraded application can



behave appropriately. Other applications that make use of the same data files will simply
ignore the additional data elements until or unless they are also upgraded. Hence, one
need not upgrade all applications at the same time. This stands in stark contrast to the
common situation in physics, where modification of a simulation code’s input or output
data requires simultaneous modification of several other codes, and makes old input and
output files unusable.

This discussion is relevant here because SDDS files are self−describing and hence
applications that use SDDS files enjoy all of the advantages just discussed. However,
there is more to SDDS than this. SDDS is not only a self−describing file protocol, it is
also a set of tools for manipulating such files. These tools areprograms, as opposed to
applications, by which I mean that they perform a single function that is not necessarily
useful by itself. The SDDS Toolkit programs are used to create or support applications
that enjoy the advantages of using self−describing files.

The word "toolkit" is used pretty frequently these days, and often inapprorpiately to refer
to a grab−bag of unrelated programs. We all know that physical tools are all related in
the sense that they can be used sequentially to perform a job that is impossible with any
single tool. Hence, one can build a house with a hammer and a saw together, but not
with a hammer only. The programs that make up the SDDS Toolkit are like real tools in
that they can be used sequentially on the same object, in this case an SDDS data file.
Like real tools, the usefulness of each SDDS tool is amplified tremendously by this
interoperability. Indeed, some tools that would be completely useless by themselves are
in fact tremendously useful because of the existence of a cooperative set of programs.
This provides an amplified return on one’s programming effort.

To understand how the SDDS Tools are used, it helps to use an analogy from
mathematics. One can write a general data processing algorithm as an equation in the
form R � On ...O
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mathematical operators that are applied successively to the input object I , in order to
produce result R . With SDDS, we can do the same thing using programs.  The "input"
object is just an SDDS file, as is the result of the application of each "operator", or
program. The SDDS file is a container object. The programs modify the contents of this
object but not the type of object. This permits the programs to be combined in an
essentially arbitrary fashion. Just as in mathematics, one can compose very general data
processing algorithms using a sequence of SDDS programs. In addition, just as in
mathematics, each program (operator) can be used in multiple applications (algorithms).
This is another factor that increases the payoff from the creation of each program.

Some examples may serve to make all this a little clearer. I’ ll draw these examples from
the accelerator field, since that’s what I’m most familiar with. In an accelerator like the
APS ring, we commonly store a beam of electrons for hours at a time. The beam
intensity slowly decays, following an exponential decay law, at least for short periods of
time. A common requirement at such facilities is to determine the "beam lifetime,"
which is just the exponential decay time. The algorithm for making this determination
can be written as a series of operations: acquireData | takeLog | fitL ine | display. In
this "pseudo−command," I’m representing operators by words describing the operations.
Each operator delivers data to the next operator, via a "pipe," represented with the
vertical bar. In words, we first acquire some data (beam current vs time), then compute



the log of the current. Following that, we fit a line, then display the results.

This simple algorithm will work quite nicely when the data is of good quality. Suppose,
however, that we try this and find that the fit is not always good due to noisy data or
occassional bad data points. In that case, we could modify the algorithm slightly:
acquireData | takeLog | fitL ine | removeOutliers | fitL ine | display. I’ ve added two
operations to the algorithm. The first new operation removes "outlier" data points, i.e.,
those that are not well characterized by the linear fit. Having removed the outlier data
points, we then repeat the fit using only the good data points. The result is more reliable
and less subject to noise and instrument errors.

This example illustrates two important advantages of the operator−based approach to
developing algorithms. First, we can quickly test an idea for an algorithm and see how it
performs. We areusing programs rather than writing programs, with all the time savings
that implies. Second, having tested the basic idea, we can insert or append new operators
to improve and extend the results. Using this approach allows us to easily see the results
of each change and judge whether it meets our needs or not.

Very frequently, those who work with SDDS Tools use temporary data files when
developing an algorithm. The first step is usually to collect some data:acquireData >
tmpFile1. The data is then plotted to get a feeling for what kind and quality of signals
are present. Following this a series of operations are performed on the data and the
results displayed after each operation. Once a satisfactory sequence has been worked
out, it is then collected into a single command with operations connected by pipes.

This approach has a number of advantages over the more common approach of writing
data processing algorithms in a programming or scripting language. First, when using
SDDS one need not define and keep track of variables, arrays, looping indices, and so on.
Second, one doesn’ t have to endure the edit, compile, debug, test cycle. Third, one can
easily examine the results of each processing step, without the extra work of adding
statements to one’s code to provide intermediate output. Fourth, since most SDDS
Toolkit programs process data based on wildcards, one can often specify large numbers
of operations with very brief commands. The net result of these advantages is that once
one has gained familiarity with SDDS, one can usually process and display one’s data in
a fraction of the time that would normally be required. This has repeatedly been our
experience at APS.

The SDDS File Protocol
Up until now, I’ ve discussed self−describing data files in a general way.  In this section,
I’d like to give more specifics about the SDDS file protocol.  It isn’ t necessary that the
user understand the internal details of SDDS files.  However, it is important to
understand the SDDS "data model" in order to make effective use of the SDDS Toolkit.
The "data model" is simply the general form of the data that can be stored in a particular
file protocol.  While it is possible to have several data models for a given file protocol,
SDDS has only one.

The SDDS data model was developed with the operator concept (discussed in the last
section) in mind. This was one motivation for having a single data model and making it
relatively simple. If the data model had been too general, it would have been too
complicated to create and use the operator approach. Another motiviation was that a



simple data model will in fact accommodate most types of data naturally and easily, so
that the simple data model makes the user’s task easier in most cases. Those data sets that
are not easily accommodated by the SDDS data model can be broken into several data
sets in separate files. This is a small price to pay given that it greatly reduces the
complexity of developing and using the SDDS Toolkit in the majority of cases.

The design of SDDS data model started with the realization that a great deal of scientific
data can be naturally organized into a table with named columns, together with a set of
named scalar values ("parameters") that pertain to the table. For example, weather data
for a series of cities could be organized as shown in the following diagram:

Average Temperature
 (deg C)

Average Humidity

(%)

Warmest City

35 68 Los Angeles

City Temperature (deg C) Humidity (%)

Chicago 38 95

New York 32 70

San Francisco 30 42

Los Angeles 40 65

In the language of the SDDS data model, "Average Temperature", "Average Humidity",
and "Warmest City" are "parameters," while "City", "Temperature", and "Humidity" are
"columns." The set of data for the columns is referred to as the "tabular data." The
parameters in this case are a summary or abstract of the tabular data. This is typical of
how parameters and columns are used together, and a relationship that is supported by
the SDDS Toolkit. For example, if the tabular data above were in an SDDS file, the
parameter values could be easily added using the program sddsprocess.

In addition to parameters and columns, the SDDS data model supports another type of
element, namely, the array element. This allows placing any number of N−dimensional
arrays in the file, where N is potentially different for each array. Clearly, any data that
can be stored in parameters or columns could be stored in arrays. In addition, arrays can
be used to store data that couldn’ t be accomodated by parameters or columns. However,
because parameters and columns are conceptually simple and natural to work with, they
are used in almost all cases. In contrast, the array feature is infrequently used and I won’ t
spend much time on it in this article.

Having introduced the SDDS file protocol, I want to make the definition more formal
and introduce some additional terminology. The figure below shows the structure of an
SDDS file. The file starts with a header that includes the SDDS version number and a
series of definitions of parameters, columns, and arrays. The header in essence defines a
data structure, giving the names, data types, and other information about the members of
the structure. Following the header are zero or more "data pages," which are simply
instances of the data structure.



Returning to the example above of temperatures for a group of cities, one sees that this
data would occupy a single page in an SDDS file. One might have additional pages
giving data for other groups of cities (in other countries, for example). However, each

page of the file must contain the same parameters and columns. The reason is that there
is only one header in each file, and the header defines what data is present. 

The reader may wonder why SDDS does not make use of a series of headers and pages
within a single file, since this would clearly make it possible to store more general types
of data. This is a legitimate question and there is in fact a very good reason that SDDS
has this restriction. Lifting this restriction would make SDDS files so flexible that using
the operator approach would become quite difficult, both in terms of developing tools
and using them. Such files would be potentially so complex that instead of writing
generic tools to work with the files, we’d have to return to the writing application−
specific programs that work with application−specific files.

In order to allow the user to deal with complex data that cannot be stored in a single
SDDS file, the SDDS Toolkit provides tools for taking selected data from one file and
placing it in another file. Each of the files can be processed and manipulated separately
prior to sharing data between them. This simplifies some aspects of the user’s task by
reducing the amount of data that must be thought about at one time.

I mentioned above that the header defines the data types of the elements in the file, as

SDDS Version ID

0 or more parameter defs

0 or more column defs

0 or more array defs

Instance #1 of parameters

Instance #1 of arrays

Instance #1 of columns

Instance #2 of parameters

Instance #2 of arrays

Instance #2 of columns

Header: defines a data 
structure

Page 1: an instance 
of the structure

Page 2: an instance 
of the structure



well as their names. SDDS supports six data types: single− and double−precision floating
point numbers ("float" and "double" types), short and long integers ("short" and "long"
types), one byte characters ("character" type), and character strings ("string" type).
Strings may have arbitrary length. SDDS does not presently support unsigned integer or
character types.

Introduction to the SDDS Toolkit
In this section, I want to introduce some of the most−used programs and discuss how
they are used to work with SDDS files.  I won’ t discuss full details of command syntax,
as these are not important at this stage. The most important thing in using the Toolkit
successfully is to understand how the various programs modify data sets.  Understanding
this is actually more important than learning the details of using the programs, which can
always be obtained from the manual.  In addition, you can obtain the usage message for
any program by running the program without any arguments.  (The manual discusses the
convention for the notation in the usage messages.)

In order to make these examples more concrete, you should try the commands using the
sample data files that are available from our Web site at http://www.aps.anl.gov/asd/oag/
oaghome.shtml. Here’s a  description of each of these files:

1) cityWeather .sdds contains the tabular data from the example in the previous section.
The file contains three columns: City (a string column), Temperature, and
Humidity.  The latter two columns give double−precision values.  The file does not
include the parameter data from the example. That will be generated using SDDS
tools in an example below.

2) tSamp1.sdds contains a table of beam−position−monitor  (BPM) data vs. time from a
simulation of the APS PAR storage ring.  The time data is called Time, whereas the
BPM columns have names like P1P1, P1P2, and so on. There is also a column called
Step that gives the sample number, a parameter called TimeStamp that gives the time
when the data collection started as a text string, and another parameter called
Star tTime that gives the same information as a double−precision number.  (Note that
times are stored as numerical values in the usual UNIX fashion, as seconds since some
reference date.  On many UNIX systems, this reference date is January 1, 1970, at
00:00:00.)

3) tSamp2.sdds is essentially the same as tSamp1.sdds, except the data is split
into many pages, rather than being collected together on a single page.

4) par .twi contains a table of Twiss parameters and other information for the PAR
storage ring.  This file contains a large number of columns and parameters, so I won’ t
try to describe them all here.

5) apsRings.twi is similar to par .twi but it contains three pages of data, one for each of
the three rings at APS.

Note that some of these files have the extension sdds, but that this is by no means
required. In fact, we usually do not use this extension but rather use various extensions
that reflect the  kind of data in the file.  For example, we typically use twi as the
extension for Twiss parameter data.



Determining What’s in an SDDS File
The first thing one needs to do when confronted with an SDDS file is find out what is
stored in it.  This can be done using the program sddsquery, which provides a listing of
the names and properties of the parameters, columns, and arrays in an SDDS file.  Basic
use of sddsquery is very easy:

sddsquery filename

(The convention for these examples is that anything in bold face must be typed literally.
Anything in italics represents an item that must be supplied by the user.  In this case, the
user must supply a filename.)

For a file with many elements, you may wish to use a UNIX pagination utility like less or
more to view the data one page at a time:

sddsquery filename | less

The printout from sddsquery gives a separate table for parameters, columns, and arrays.
Each table gives the name of each element and its data type, along with units and other
information.

Viewing the Contents of an SDDS File
There are several ways to view the data in an SDDS file. The program sddspr intout is
designed to provide formatted printouts of data from SDDS files. It will print parameter
and column data only. At minimum, one must tell sddspr intout what classes of elements
you are interested in.  For example, to see a printout showing all the column data from
the cityWeather .sdds file, one would use the command

sddspintout cityWeather .sdds −column

To see all the parameter data in the file par .twi, one could use

sddspr intout par .twi −parameter −width=80

where I’ ve added the width option to ensure that the printout width is restricted to  80
columns.

One may also give sddspr intout specific lists of columns or parameters to print, or
wildcard patterns, as in

sddspr intout par .twi −col=s −col=beta* −col=eta?

which would print data the columns s, betax, betay, etax, and etay. Note that I’ ve
abbreviated the option names.  All SDDS Toolkit programs allow the use of any unique
abbreviation of an option name.  We prefer not to make use of this feature when creating
permanent scripts, as a given abbreviation is not guaranteed to be unique in all future
program upgrades, but it is a great convenience when working at the commandline.

Other functions of sddspr intout are to convert data from SDDS into spreadsheet format.
This is discussed below in the section entitled Converting SDDS to Other Formats.

Another program that gives text−based printouts from an SDDS file is sdds2stream. The
original purpose of this program was to allow streaming ASCII data from an SDDS file



into another application, such as a script or non−SDDS program. It is still used this way,
although this isn’ t really very efficient except for relatively small data sets. sdds2stream
provides some other convenient functions.  For example,

sdds2stream filename −rows

will tell you how many rows are in each page of the file, while 

sdds2stream filename −npages

will tell you how many pages are in the file.

Finally, a completely different way to view the contexts of an SDDS file is using one of
the SDDS editors. There are versions written in Tcl/Tk (by Dariusz Blachowicz) and
Java (by Robert Soliday). These programs are not strictly part of the SDDS Toolkit and
are distributed separately.  However, they can be quite convenient in that they permit
viewing data in a spreadsheet−like layout and support editing, deleting, searching,
merging, and other operations.

Plotting the Contents of an SDDS File
The program sddsplot is the primary means of plotting SDDS data. This program is very
versatile and is probably the most complex in the Toolkit. However, basic use of
sddsplot is trivial. sddsplot will plot data from parameters, columns, and arrays. 

For example, suppose one wants to plot the beta−functions from par .twi.  One could use

sddsplot par .twi −column=s,beta*

The result is a plot with two curves, but in the same color.  To get a different color, one
needs an added option, as in

sddsplot par .twi −col=s,beta* −graphic=line,vary

The graphic option accepts a "graphic class" as the first qualifier; in this case it’ s line.
One may also give symbol, bar , impulse, errorbar, and others.  In each case, the
qualifer vary causes sddsplot to change the type of the graphic for each plotted quantity.

One may also explicitly specify the graphic type, using the type qualifier, as in

sddsplot par .twi −col=s,betax −graph=line,type=0 \
      −col=s,betay −graph=line,type=2

In this example, there are two column options.  In sddsplot jargon, each of these options
starts a "plot request." A plot request starts with one or more consecutive options that
specify what to plot.  It includes zero or more filenames and zero or more other options,
which apply only to that request.  Any filename or option that preceeds all the plot
requests applies to all the plot requests.  So the filename par .twi in the last example
applies to both plot requests.  However, the option −graph=line,type=0 applies only to
the first request, while −graph=line,type=2 applies only to the second request.  The
concept of plot requests allows using sddsplot to compose very complex plots.

Note that the following two commands are very different:

sddsplot −col=s,betax −col=s,betay par .twi



sddsplot −col=s,betax par .twi −col=s,betay

The first of these commands contains a single plot request, because the column options
are consecutive.  Hence, the pairs (s, betax) and (s, betay) are drawn from par .twi. The
second command, in contrast, contains two plot requests, the second of which is invalid
because it contains no data files.

This may seem unnecessarily complex given that we have only one data file.  However,
sddsplot allows plotting data arbitrary number of data files together.  Without the notion
of plot requests, it would be impossible to specify how to plot data from many files.
There will be examples of using multiple files later in this article.

Like most complex SDDS programs, sddsplot has many options, a subset of which are
commonly used.  Two of these (column and graphic) have been introduced already.
Here’s a listing of some of the others:

1. −device=deviceType  and −output=filename can be used to change the type of
graphical output and direct it to a file.  These options should preceed any plot
requests. For example, for color postscript output to a file, one can use a command
like
sddsplot −device=cpost −output=filename.ps \
 −column=s,beta*  par .twi−graph=line,vary 
To get a listing of the available device types, use the command
sddsplot −listDevices
One may omit the output option and simply pipe the output to a printer, as in
sddsplot −device=post −col=s,betax par .twi | lpr

2. −legend allows requesting legends on the plot.  This option may be given prior to any
plot requests, in which case all data pairs have legends, or within a plot request, in
which case only the data pairs belonging to specific plot requests will have legends.
For example,
sddsplot −legend −graph=line,vary par .twi −col=s,beta*
will give legends for betax and betay, whereas
sddsplot −graph=line,vary par .twi \
  −col=s,betax −legend −col=s,betay
will give a legend only for betax.  You may also specify the legends explicitly, as in
sddsplot −graph=line,vary par .twi \
  −col=s,betax " −legend=spec=Hor izontal Beta"  \
  −col=s,betay " −legend=spec=Ver tical Beta"
This is a good illlustration of the usefulness of multiple plot requests.

3. −scales=xmin,xmax,ymin,ymax option allows one to specify the x and/or y limits for
the plot.  For example,
sddsplot −col=s,betax par .twi −scale=0,10,0,0
would plot from 0 to 10 in x but with autoscaling in y (because ymin and ymax are the
same).  This option is a little primitive.  Other related options that can be found in the
manual are −range and −limit.

4. m the different rings with lines as if the pages all pertained to the same ring. A slightly



better plot is obtained with
sddsploThe −layout=nx,ny option allows plotting several panels on a single sheet
of paper (or in a single graphics window). The parameters nx and ny specify the
number of horizontal and vertical panels in a grid.  Unlike most other sddsplot
options, the −layout option may only be given once and must be given before any plot
requests. As an example of its use, consider the following command to plot two
quantities in separate panels, one below the other
sddsplot −layout=1,2 tSamp1.sdds \
 −col=Time,P1P1 −end −col=Time,P2P1
The −end option is one way to tell sddsplot to end a panel.  In this case, the initial
panel is ended with the first plot request.  The second plot request therefore starts on
the second panel.  As a variation on this, consider
sddsplot −lay=2,2 −graph=line,vary tSamp1.sdds \
  −col=Time,P1P? −end −col=Time,P2P? −end \
  −col=Time,P3P? −end −col=Time,P3P?

5. Another way to separate data onto panels is to use the −separate option, as in
sddsplot −layout=1,4 tSamp1.sdds −separate −col=Time,P1P? 
This is the simplest form of the separate option.  Another basic form is
−separate=number, where number gives the number of data pairs to put on each
panel.  Much more complex operations are possible by combining this option and
some of its other qualifiers with the −groupby option, which allows sorting and
grouping data pairs.  Some of these operations will be discussed in later sections.

6. Unlike most other SDDS programs, sddsplot by default treats a file as a single data
set. Most other programs treat each page of the file as a data set.  As a result, one
sometimes needs to use the −split=pages option to separate data page−by−page. For
example, the plot made by the following command is not very useful:
sddsplot −col=s,betax apsRings.twi
The data from each page corresponds to one of the APS storage rings. However, the
plot shows all the data on one panel and indeed connects data from the different rings
with lines as if the pages all pertained to the same ring. A slightly better plot is
obtained with
sddsploThe −layout=nx,ny option allows plotting several panels on a single sheet of
paper (or in a single graphics window). The parameters nx and ny specify the number
of horizontal and vertical panels in a grid.  Unlike most other sddsplot options, the
−layout option may only be given once and must be given before any plot requests.
As an example of its use, consider the following command to plot two quantities in
separate panels, one below the other
sddsplot −layout=1,2 tSamp1.sdds \
 −col=Time,P1P1 −end −col=Time,P2P1
The −end option is one way to tell sddsplot to end a panel.  In this case, the initial
panel is ended with the first plot request.  The second plot request therefore starts on
the second panel.  As a variation on this, consider
sddsplot −lay=2,2 −graph=line,vary tSamp1.sdds \



  −col=Time,P1P? −end −col=Time,P2P? −end \
  −col=Time,P3P? −end −col=Time,P3P?

7.  sddsplot −col=s,betax apsRings.twi \
  −graph=line,vary −split=page
One can clearly see that there are three rings now, but it still isn’ t very useful as the
size of the rings is so different.  Adding another option gives a useful result:
sddsplot −col=s,betax apsRings.twi \
  −split=page −separate
where I’ ve removed the −graphic option as it isn’ t necessary when plotting one item
per panel.  In this command, the pages are split into individual data sets, which are
plotted on separate panels.
sddsplot −col=s,betax apsRings.twi \
  −graph=line,vary −split=page
One can clearly see that there are three rings now, but it still isn’ t very useful as the
size of the rings is so different.  Adding another option gives a useful result:
sddsplot −col=s,betax apsRings.twi \
  −split=page −separate
where I’ ve removed the −graphic option as it isn’ t necessary when plotting one item
per panel.  In this command, the pages are split into individual data sets, which are
plotted on separate panels.

8. In several of the plots shown above of data from tSamp1.sdds, the time axis labels
show large numbers that don’ t have any clear meaning. These are the UNIX time−
stamp values, giving seconds since January 1, 1970. A more useful display can be
obtained using the −ticks=xtime option, which instructs sddsplot to make time−style
ticks for the x axis.  For example, consider
sddsplot −col=Time,P1P1 −ticks=xtime tSampl.sdds
In this plot, the x axis label is replaced by a string giving the starting time of the plot,
while the x tick labels show fine−scale time information, in this case minutes and
seconds information.  −ticks=xtime can be used for time scales from fractions of a
second to decades.

9. The badly−named −mode option is used to perform a number of special
transformations of the data prior to plotting.  For example, it can be used to take the
base−ten logarithm of the data, to normalize the data, and to apply automatically−
computed offsets.  Plotting data using a log−scale in sddsplot involves specifying two
actions: taking the logarithm and (optionally) using special log scales, as in
sddsplot −col=s,betay par .twi −mode=y=log,y=special
Another way to do this is to combine the −mode and −ticks options, as in
sddsplot −col=s,betay par .twi −mode=y=log −ticks=ylog
Using the −ticks option allows accessing other features such as non−exponential
labels on the ticks.

10.Another frequently−needed plotting feature is to use different scales for different data
pairs.  For example, one might want to plot betax and betay on one scale and etax on



another.  This can be done using the −yscales option, as in
sddsplot par .twi −graph=line,vary \
   −col=s,beta? −yscales=id=beta \
   −col=s,etax −yscales=id=eta
In this command, a −yscales option is given for each plot request.  In the first
instance, the command specifies use of a new y scale with identifier ("id") "beta,"
whereas in the second instance, a new y scale is used with identifier "eta." The use of
identifiers for the scales allows the user to create scales and use them for specific data
pairs.  For example, the above command could be rewritten and improved as follows
sddsplot par .twi −graph=line,vary \
  −col=s,betax −yscales=id=beta "−legend=spec=Beta x"  \
  −col=s,betay −yscales=id=beta "−legend=spec=Beta y"  \
  −col=s,etax −yscales=id=eta "−legend=spec=Eta x"
The y scale "beta" is referred to in two plot requests now.  The advantage of doing this
in this example is that it allows specifying additional options for each plot request.

Using sddsprocess for Basic Analysis and Filtering
The program  sddsprocess is, like sddsplot, very powerful and potentially complicated.
Like sddsplot, basic use of sddsprocess isn’ t hard.  sddsprocess provides the following
functions, among others: evaluating equations to create new columns and parameters in a
file; filtering data based on values in columns and parameters; and computing statistics of
column data to create parameters.

Equation Evaluation

sddsprocess uses RPN (Reverse Polish Notation) for specifying equations. These
equations may contain the names of parameters and columns along with mathematical
operators of various types. This facility is based on the RPN interpreter used by the
programs rpn and rpnl, both of which are distributed with the SDDS Toolkit. One way
to gain familiarity with the operators available is thus to run rpn and give the help
command.  It is also documented in the SDDS Toolkit manual.

Here’s an example of using the equation feature in sddsprocess.  In this example, I
define a new parameter giving the x emittance of the PAR storage ring, then use that
parameter and the x beta function to compute the monoenergetic beam size, given by the
equation � � �����

sddsprocess par .twi par1.twi \
  −define=parameter ,emitx,3.6e−7,units=m \
  −define=column,Sx," emitx betax *  sqr t" ,units=m
sddsplot −column=s,Sx par1.twi

Statistics and Other Column Processing
sddsprocess provides for computation of various statistics of column data, with the
results of the computations being placed in newly−created parameters.  The command
syntax permits wildcards in the names of the columns to be processed, allowing easy



processing of large numbers of columns with a single command.  Types of processing
include average, rms, standard deviation, minimum, maximum, mode, median, quartile
and decile ranges, percentiles, and so on.  A full list along with details of syntax is
available from the manual.

We can use sddsprocess with the file cityWeather .sdds to compure some average
temperatures and find the most humid city.  This is done with the following command:

sddsprocess cityWeather .sdds cityWeather .proc \
  −process=Humidity,ave,Average%s \
  −process=Temp*,ave,Average%s \
  −process=Humidity,max,MaximumHumidity \
−process=Humidity,max,MostHumidCity,position,functionOf=City

This command contains four −process options.  The first of these finds the average of the
data in the Humidity column and puts the result in a new parameter called
AverageHumidity.  The syntax "Average%s" tells sddsprocess to compose the new
parameter name by substituting the column name for %s.  This syntax is needed when
using wildcards, and it saves typing even when not using wildcards.  The second option
finds the average of all columns matching the wildcard sequence "Temp*".  Of course,
there is only one such column in our file.  In this case, the syntax saves typing out the
entire word.  The third option simply finds the maximum value of the Humidity column.
The final option is more complex, because it involves finding the value in the column
City corresponding to the maximum value in the column Humidity. To perform such
two−column operations, the −process option requires that the first column (Humidity)
be declared a function of another column (City).  In addition, for this particular case, one
must specify that one wants the position of the maximum, i.e., the value of  City rather
than the value of  Humidity.

We’ ll see some more examples of using the −process option a little later.

Filtering Data
Another feature of sddsprocess is the ability to filter data based on the contents of
columns or parameters. This is accomplished using the −filter , −match, and −test
options.  When the filtering conditions involve numbers, −filter is generally used,
although −test is also sometimes employed.  When the filtering uses string or character
data, −match is used.

Here are some simple examples of using the −filter and −match options.  Suppose you
wanted to find the average beta functions at the end of all the quadrupoles in par .twi.
These elements have ElementType of "QUAD".  The command would be

sddsprocess par .twi −pipe=out \
 −match=column,ElementType=QUAD \
 −process=beta?,average,%sAve \
  | sddspr intout −pipe −parameter=beta?Ave

Similarly, if you wanted to find the average beta functions for all elements in the first
10m of the ring that are also quadrupoles, you could use the command



sddsprocess par .twi −pipe=out \
 −match=column,ElementType=QUAD \
 −filter=column,s,0,10 \
 −process=beta?,average,%sAve \
 | sddspr intout −pipe −parameter=beta?Ave

Note that the order of items on the sddsprocess commandline is important.  The
following command finds the average beta functions for all elements, after which it
removes all rows that do not pertain to QUAD elements, and finally computes the
average for all quadrupoles:

sddsprocess par .twi −pipe=out \
 −process=beta?,average,%sAllAve \
 −match=column,ElementType=QUAD \
 −process=beta?,average,%sQuadAve \
 | sddspr intout −pipe −parameter=beta?*Ave

This feature of sddsprocess allows combining many processing steps on a single
commandline.  The steps are implemented for each page in the order that they are given
on the commandline.  One limitation is that wildcard sequences may not refer to
elements created  by previous steps.  All wildcard sequences are resolved with reference
to the elements in the input file.

Converting SDDS to Other Formats
Sometimes it is convenient to convert SDDS data into other formats.  For example, you
may want to import the data into a program that is not SDDS−compliant.  There are good
ways and bad ways to do this.  A commonly−used practise that I very strongly
discourage is to use the program sddsconver t with the −ascii option, then edit out the
SDDS header to produce a text file.  The main reason this is bad is that the definition of
SDDS provides no guarantee of the order of the data in the file.  For example, whether
the first column of data is betax or  ElementName is irrelevant in the SDDS context and
hence is not specified. If you want to ensure that your conversion gives the same results
every time, you must use another utility for this purpose. The second reason this is a bad
method is that it is tedious and error−prone.  SDDS provides systematic, repeatable
methods of emitting non−SDDS data, which I encourage you to use.

There are several utilities to choose from.  sdds2stream is a good choice for single page
data files or cases where you don’ t need any labels on the data.  You must explicitly
name each parameter or column that you want in the output, which guarantees that there
are no surprises.  Another popular choice is sddspr intout, which can produce
spreadsheet−ready output.  Note that this program will accept wildcards in the names of
the columns, so there is a potential pitfall in that your output may be different if
unexpected, matching columns or parameters are present in the file. This is of particular
concern if the sddspr intout command will be embedded in a script that may be used
over and over again.   Here’s how to use sddspr intout to make comma−separated−value
spreadsheet data:



sddspr intout −spreadsheet=csv −column=*  cityWeather .sdds cityWeather .csv

This command creates the file cityWeather .csv, which can be imported directly into
most spreadsheet programs.

An easier−to−use program than sddspr intout is sdds2plaindata.  This program will
provide plain data in either ASCII or binary formats.  The "plain data" format has helpful
information such as the number rows in a page.  It will not, however, provide a
spreadsheet−ready file (with column headers) such as generated by sddspr intout.

Converting Non−SDDS Data to SDDS
There are a number of programs that allow converting non−SDDS data to SDDS.
Among these are csv2sdds and plaindata2sdds. These programs perform pretty much
the same function, but with some differences.   plaindata2sdds is the more general
program, but csv2sdds is easier if you happen to have comma−separated−value data.  For
example to convert the cityWeather.csv file back to SDDS, one could use the following
command:

csv2sdds cityWeather .csv cityWeather .sdds1 −skiplines=1 \
 −column=name=City,type=str ing −column=name=Temperature,type=double \
 −column=name=Humidity,type=double 

(The −skiplines option is used to force csv2sdds to ignore the first line of the file, which
contains the column headers.)

"Hierachical"  Data Processing
The SDDS toolkit excels at what I call "hierarchical" data processing.   This means
processing the results of prior processing.  It usually involves using the program
sddscollapse, often in combination with sddsprocess.  The purpose of the latter program
is to simplify a data set by removing all of the column data and turning the parameters
into columns. If the columns were previously analyzed using sddsprocess, using
sddscollapse produces a new data set that contains the results of the analysis, with each
row of the new data set corresponding to a page of the original data set.

Let’s see how this works with the file tSamp2.sdds, which contains many pages of data.
Suppose you wanted to compute the average value (over pages) of the standard deviation
(in a page) for each of  the P?P? columns in this file.  Here’s how you’d do it:

sddsprocess tSamp2.sdds −pipe=out \
  −process=P?P?,standardDeviation,%sStDev \
| sddscollapse −pipe \
| sddsprocess −pipe \
 −process=P?P?StDev,max,%sMax \
 −process=P?P?StDev,ave,%sAve \
| tee tSamp2.proc1 \
| sddspr intout −pipe −parameter=P?P?StDev???

The first step in this command processes each of the columns P?P? to find the standard



deviation of the values for each page. In the second step, sddscollapse is used to  throw
out the column information and convert the parameters into columns.  Each row in the
output of sddscollapse corresponds to a page in the input.  Hence, we can now use the
−process option of  sddsprocess to work on the standard deviations.  In this case, we
find the maxima and averages of the standard deviations across pages.  Note that we are
always performing operations independently for data pertaining to each of the original
columns.

Notice the use of the UNIX tee command to make a copy of the data before piping it into
sddspr intout. We can use this copy for another step of analysis.  Suppose that we now
want to plot the average and maximum standard deviations as a function of the name of
the originating column. We know that the parameters we are interested in have names
like P1P1StDevAve, P1P1StDevMax, etc. If we use  sddscollapse again, we can convert
these parameters into columns.  The file at this point has only a single data page and a
single row in that page, and contains two columns for each column of the original file.
We’d like to rearrange the data so that we have a column containing the name of the
original column, a column of averages of standard deviations, and a column of maxima
of standard deviations. Here’s how to do it:

sddscollapse tSamp2.proc1 −pipe=out \
| sddscollect −pipe=in tSamp2.proc2 \
−collect=suffix=StDevAve \
−collect=suffix=StDevMax 

sddsplot −column=Rootname,StDev??? −graph=line,vary  \
 −legend tSamp2.proc2

We’ve now performed processing of the original data through two levels.  I.e, we’ve
processed the processing.  We can keep doing this.  For example, suppose you wanted to
know the median and maximum of the "StDevMax" values, as well as the name of the
original column for which the StDevMax was greatest. You’d find these as follows:

sddsprocess tSamp2.proc2 −pipe=out \
−process=StDevMax,median,%sMedian −process=StDevMax,max,%sMax \
−process=StDevMax,max,%sMaxSigName,func=Rootname,posi \
| sddspr intout −pipe −parameter=StDevMax*

It is hard to do much more processing with this dataset, but imagine that we had a
number of data sets of the same type. We could process each of them as above, then
combine them to continue the processing.  For example, we might want to find out which
was the noisiest signal for each dataset, or plot the value of that signal against some
parameter that varies between datasets (e.g., the time of acquisition).  The combining of
datasets is accomplished using the program sddscombine. 

I hope it is apparent from this discussion that SDDS can be used to perform very
complex, multi−level processing and reduction of data.  This kind of data processing is
frequently used in dealing with data from experiments at APS.  Most often, the



processing is performed by scripts, as it is easier to keep track of the many levels of
analysis that way. The "for" and "foreach" looping commands that are found in script
languages like csh, bash, and tcl are very useful in this context.


